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Abstract— Compliant robotic grippers are more robust to
uncertainties in grasping and manipulation tasks, especially
when paired with tactile and proprioceptive feedback. Although
considerable progress has been made towards achieving propri-
oceptive soft robotic grippers, current efforts require complex
driving hardware or fabrication techniques. In this paper, we
present a simple scalable soft robotic gripper integrated with
high-deformation strain and pressure sensors. The gripper is
composed of structurally-compliant handed shearing auxetic
structures actuated by electric motors. Coupling deformable
sensors with the compliant grippers enables gripper proprio-
ception and object classification. With this sensorized system,
we are able to identify objects’ size to within 33% of actual
radius and sort objects as hard / soft with 78% accuracy.

I. INTRODUCTION
Robot grasping and manipulation are critical to future

interaction with humans in real world situations, such as
home assistance or elderly care. However, everyday tasks can
be quite difficult for traditional rigid manipulators because
of the unstructured environments and diversity of objects
encountered in everyday operation. The intrinsic compliance
of soft robots allows them to tolerate these uncertainties.
Their lower stiffness and continuous deformation allow soft
manipulators to more deftly grasp a wider range of objects
without complex control schemes or obstacle avoidance
measures [1, 2]. Soft grippers can further exploit their envi-
ronmental interaction with the addition of soft haptic sensing,
allowing greater understanding of the grasped object and
external deformations of the hand itself [3].

Considerable progress has been made in creating these
proprioceptive soft robotic grippers [4]. Current approaches
include adding off-the-shelf components to the rigid com-
ponents of a compliant gripper [5], embedding sensors
within the soft body of the hand [6, 7], or directly building
sensors through the manufacturing process [8, 9]. However,
these solutions do not fully deliver on the potential of soft
grippers due to their bulky actuation schemes and fabri-
cation methods. Most of these grippers rely on pneumatic
actuation due to its fast response time and high strength-
weight ratio. However, the need for a pump, compressor
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Fig. 1. Overview of the overall gripper design. Each finger of the gripper
is actuated by a servo to a pair of handed shearing auxetic cylinders
(A). An elastic strain sensor along the outer curve of the finger provides
proprioceptive feedback (B). A pressure sensor along the inner curve
provides haptic sensing (C). We demonstrate how these components fit
together on the gripper by removing the glove from the left finger (D).

and valves to convert electric power to fluidic systems adds
considerable physical bulk and power inefficiencies [10].
This issue of complex driving hardware is present in other
popular actuation schemes like cable-driven and shape mem-
ory alloy systems [11]. The single-material solutions avoid
this overhead of complex assembly, but rely on bespoke
manufacturing processes with low throughput, making their
potential adoption limited [12]. There is a clear need for
a soft robotic gripper designed with scalable actuation and
fabrication methods.

To address this need, we present a fully electric, sensorized
soft robotic gripper fabricated via scalable manufacturing
techniques. By combining the compliance of the handed
shearing auxetic (HSA) structures from [13] and the highly-
deformable strain and pressure sensors from [14], our gripper
is able to measure its own large deformation proprioceptively.
This allows it it to sense the difference between stiff vs. soft
objects and large vs. small objects, similar to how humans
understand an object’s stiffness through the combination of
the feel of an object and the inherent knowledge of the
softness of our own fingertips and hands. We characterize
this proprioception, detecting a finger bending angle of up to
45◦ and identifying grasped objects’ diameter and stiffnesses.
The main contributions of this paper are:

• creation and characterization of an electrically-driven
soft HSA-based robotic gripper with integrated soft
strain and pressure sensors

• a simple regression-based model that can estimate the
radius of grasped objects to within 33% and distinguish
hard vs. soft objects with 78% accuracy
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II. RELATED WORK

Proprioceptive soft robotic manipulators generally fall
under one of two categories: (1) compliant grippers built
from rigid materials and flexible drivetrains [15–17] and
(2) fluid-driven grippers made directly out of soft materials,
typically, silicone elastomers [1].

The majority of efforts to incorporate sensing into
rigid-material, compliant grippers have leveraged pressure-
sensitive pads on the fingertips for force feedback [5, 18]
or for classifying the grasped object based on size and
orientation [19, 20]. Joint angle sensors have also been used
to reconstruct the pose of the gripper [5, 21]. While the
capabilities of these grippers have been enhanced by the
incorporation of haptic feedback, they remain limited by the
existence of rigid linkages and pre-defined joints.

Soft material-based grippers, however, leverage the soft-
ness of the actuation scheme and their bulk material prop-
erties to create a fully compliant system [1]. These grippers
tend to be fluid-driven with interior chambers that upon
addition / removal of fluid, close up and grasp around an ob-
ject. Efforts towards sensorizing soft material grippers have
utilized liquid metal-based deformation sensors to track mo-
tion of the gripper fingers [9, 22, 23], conductive elastomer-
based strain and pressure sensors for haptic-based mapping
of object contours [24], commercially-available bend sensors
to classify objects [6], and either conductive elastomer or
liquid metal-based sensors to control the degree of grasp
of the gripper [14, 25]. While these soft material grippers
have demonstrated success in passively conforming to grasp
objects, a fluid-driven actuation system can be unwieldy and
difficult to implement. Hence, despite competent sensory
feedback, the complexity of the actuation scheme limits the
utility of the sensor information and the ultimate applicability
of soft-material grippers in real-world environments.

In this work, we integrate a rigid-material, yet compliant
gripper structure with soft-material strain and pressure sen-
sors. By using the HSAs, our gripper is motor-driven like
rigid articulated systems, allowing us to avoid the issues
of controlling infinite degrees of freedom commonly found
in purely soft systems. The stretchability of the sensors
allows the large deformations ( 50% strain) of the HSAs
to be measured. The design of both the HSAs and the
sensors are highly dependent on their constituent materials,
much like how conventional fluidic soft robots leverage the
extreme stretchability of their materials to create motion. The
coupled choices of material and design allow us to create
a compliant, sensorized gripper with a simple design and
actuation scheme, and efficient use of materials.

III. GRIPPER DESIGN

To address gaps in current research, our primary design
requirements (DRs) for this gripper were:

1) a compliant system
2) directly electrically powered
3) scalable fabrication techniques
4) proprioceptive / tactile sensing

Our final gripper design (Fig. 1) achieved these goals by
combining the compliant electric actuators shown in [13]
with the stretchable strain and pressure sensors demonstrated
in [14] to create a versatile novel gripper. The gripper is
made up of two fingers that pinch together, with each finger
comprising a pair of HSA cylinders of opposite chiralities
that counterrotate against each other, driven by a multi-turn
servo. The strain and pressure sensors were then mounted on
to each finger via 3D-printed caps and adapters. The pressure
sensors were placed along the inner curve of the fingers,
while the strain sensors were placed on the outer curve. Since
the sensors deform with the fingers, the effect on overall
displacement is minimal.

Each finger was then mounted to a 3D-printed adapter
made to fit a Rethink Robotics Baxter robot used for ma-
nipulation. The distance between the fingers was determined
by the mounting points of the Baxter, giving a open finger
distance of 9.5 mm. To add a third point of contact, a 5 mm
wide silicone-covered palm was mounted between the two
fingers. Per DR3, this gripper is only made via standard
manufacturing techniques, such as laser cutting, rod-coating,
fused deposition modeling 3D printing, and silicone casting.

A. Actuator Selection

In order to have actuators that satisfy design requirements
1-3, we chose the compliant electric actuators demonstrated
in [13] that are based on handed shearing auxetics. HSAs
expand on traditional auxetics (materials with a negative
Poisson’s ratio) by having a set chirality and net shear.
Thus, HSAs directly couple twisting motion with linear
extension. When two HSA cylinders of opposite chirality are
paired together, each cylinder opposes the other’s direction
of twisting, allowing the pair to extend as a unit [26].

HSAs were the ideal actuators for our system because
by using traditional motors and servos, linear actuation and
bending can be achieved, directly satisfying DR2. Further-
more, since any material that can support a pin joint or living
hinge joint can exhibit HSA material properties, we had
significant design space and possible material selection to
achieve our desired level of compliance, addressing DR1.

For the cylinders in our gripper, we laser cut 60 mm
long, 25.6 mm diameter PTFE tubes with a 1.58 mm wall
thickness on a rotary engraver (PLS6.150D, Universal Laser
Systems). We cut our tubes with a tessellated pattern similar
to [27] with six base units around the circumference. To
grasp objects, we added an internal constraint layer to the
pattern to allow out-of-plane bending similar to the standard
pneunet actuator [28].

B. Sensor Selection

Once we were set on using an HSA-based gripper design,
the best sensor for our design goals were the strain and
pressure sensors originally presented in [29] and [14]. Each
sensor is based on a capacitive stack-up of a conductive
charging layer, dielectric layers and conductive shielding
ground layers [30]. When stretched, the overlapping area
between the charging and ground layers increases, while the

2766



dielectric layer becomes thinner, resulting in an increase in
capacitance. A similar effect occurs in the pressure sensors
as they are compressed.

These sensors were ideal for our gripper as they could
match the high deformations of the HSAs and provide
reliable results. By being soft themselves, the sensors would
increase finger conformation around a grasped object without
inhibiting any finger movement. The strain sensors had also
previously been shown to have a linear response to their
intended mechanical parameter over thousands of cycles,
ensuring that they would still reliably work for the lifetime
of the gripper [29].

The strain sensors in this paper were made from a five-
layer capacitive stack-up while the pressure sensors were a
three-layer stack-up (no ground shielding). The conductive
layers were made of an expanded graphite and silicone
composite material. The dielectric layers were silicone elas-
tomer (DragonSkin 10 Slow, Smooth-On) for the strain
sensors, and a porous (≈ 65%) foam made from silicone
and sacrificial sugar pellets (Suglets, Colorcon). Each sensor
was interrogated using a signal conditioning board which
charges the capacitor for a fixed amount of time, and then
measures the length of time it takes to discharge to 0.2 V.
This discharge time is a proxy for the capacitance, which in
turn is a measure of the deformation applied.

Since there was significant electromagnetic interference
from the servos, extra shielding was applied to the sensors
in the form of a thin (1/32”) silicone glove and copper tape.
This glove also helped hold the sensors in place and increase
contact friction between the gripper and grasped object. An
extra infinite impulse response filter was also applied to the
sensor reading to reduce noise outputs at the cost of a more
delayed response time.

IV. GRIPPER CHARACTERIZATION

When the gripper grasps an object, the grasped object
places external forces on the soft gripper, causing extra
deformation. We characterized the gripper in a non-grasping
environment in order to recognize these extra deformations
and use them for object size sorting (Fig. 2).

To connect our knowledge of given servo position, strain
sensor reading and overall finger bend radius, we track the
top and bottom caps of the unsheathed finger in an Optitrack
motion capture system while stepping each of the servos
from maximum open to maximum close back to maximum
open. The maximum open state of the finger was when the
internal living hinges were fully jammed against one another.
The maximum closed state of the finger was when the finger
began undergoing helical instability and twisted in on itself.
This instability is due to manufacturing variance between
the two cylinders, as one cylinder may be slightly more
compliant than another due to variations of the internal beam
widths and living hinge thicknesses.

Our reference frame in the Optitrack system is defined by
the coordinate system defined by the bottom cap, with X
pointing into the page, Y pointing vertically, and Z pointing
to the right of the figure. We measure the total movement

Fig. 2. Characterization of a single finger without load, which match
the three states of the handed shearing auxetics – closed, linear regime
and helical instability (A). We correspond the servo position to the overall
bending angle (B) and the on-hand strain sensor (C). The bending angle
is measured by taking the difference between the bottom and top plate’s
reference frames, as visualized in (A).

of the system by tracking how the reference frame of the
moving top cap of the finger moves in relation to the
coordinate system of the bottom cap. Initially, both reference
frames coincide, but as the finger moves, the top reference
frames rotates about the bottom reference frame. The top
reference frame always has Y perpendicular to the plane
created by the top of the top cap, which is spanned by the
X and Z axes.

We conducted three open-close-open trials, giving us two
datapoints per trial for a given servo angle. For a given servo
rotation, we report the mean and standard deviation of all
six data points. Although we only report results for the left
finger here due to space, similar results can be found for
the right finger. The only changes are that the servo turns
in the opposite direction due to differences in chirality, and
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that the strain sensors report a slightly different value at rest.
The overall structure remains the same.

From these trials, we found a fairly linear correlation
between the servo, the strain sensor and the overall geometry
of the system (Fig. 2) (R2 values vary from 0.931 to 0.974).
As the servo rotates from its closed state to 13 degrees,
the fingers elongate linearly up to about 25 degrees of
bending radius. This linear elongation is expected as the
finger constraint forces a constant curvature response from
the fingers. At the 25 degree mark, we see the beginnings
of the helical instability of the HSAs come in, resulting in
a twisting of the actuators in on itself, stopping bending
at nearly 45 degrees and leading to a pitch of 20 degrees
(Fig. 2A). The strain sensor is able to capture this bending
and twisting quite well, matching the linear growth in angle,
tapering off after 15 degrees of servo rotation (Fig. 2B).

Since the rest state of the fingers (where top and bottom
caps align) is at roughly 3 degrees of servo rotation, we
see several anomalous values. The negative bending angle
values from 0 - 3 degrees of servo rotation is an artifact
of measuring the overall rotation angle as the difference
between the top and bottom cap. Similarly, the anomalous
sensor reading at 3 degrees bending angle is an artifact of
the time averaging across datapoints. Thus, the strain sensors
offer a good model of the state of the HSAs and can be used
to approximate the state of the gripper.

V. OBJECT SORTING

To get a better sense of the sensor values in actual
grasping use, we grasped a series of test objects with known
stiffnesses and geometries and recorded the sensor readings
during grasping (Fig. 3). We are interested in evaluating how
well the gripper can bucket different objects into categories
of “large vs. small” and “soft vs. stiff”, similar to human
categorization.

Our manipulation targets (Fig. 4) were drawn from the
YCB Dataset [31] and other sources to get a wide range of
compliance (1 - 103 MPa) and size (20 - 55 mm in radius).
For each object, we measured the cross sectional diameter
and had three people rate the compliance of each object on
a 1-10 scale, 10 being the most compliant. The average of
these measurements was taken as the overall compliance of
the object.

We chose to evaluate compliance on a simplified human-
rated scale rather than Young’s modulus or weight to more
closely simulate human proprioception of classifying objects
by binning on a scale. Furthermore, since the pressure
sensors directly measure the grasp normal force, stiffness and
weight only provide a partial capture of the actual overall
compliance of the object. Objects with the same human
compliance rating may not be the same stiffness, but fall
into the same “hard” or “soft” categorization.

To minimize variance involved in grasp planning, we
placed all of our objects manually in a set grasping con-
figuration and had Baxter run through a preset grasping
routine. Preset servo values are used for the gripper’s open
and closed states. After the gripper closed, the pressure and

Fig. 3. Four representative objects grasped (A) and the corresponding
strain (B) and pressure data (C) received from the sensors on the right
finger. These objects were chosen as they represent the extremes of our
datasets’ compliance and size.

strain values are recorded. Each object is then picked up and
shaken to determine robustness of grasp hold. We recorded
data before shaking as the extra motion caused shifts in the
grasping normal forces, changing the pressure sensor values
dramatically. Although this pressure differential between the
two fingers could be used for future object pose estimation,
this is outside the current scope of the paper.

To get a baseline from which to evaluate the rest of the
objects in terms of our four parameters (small, large, stiff
and soft), we select four representative items – a magic 8
ball (compliance 1.3, diameter 107 mm), a deflated football
(compliance 8.7, diameter 89 mm), a foam brick (compliance
9, diameter 43 mm) and a whiteboard eraser (compliance
2.3, diameter 51 mm) – and measured the sensor response
(Fig. 3).

From the strain sensor, we see that the smaller objects had
similar strain profiles as the fingers are able to mostly achieve
their normal closed state. The slowly rising sensor response
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Fig. 4. Objects used in grasp testing. Our gripper could pick up the
43 objects in group (A) and could not pick up the 13 objects in group
(B). Plotting compliance rating vs. radius reveals that our gripper has most
difficulty with small stiff items (C), due to the larger force necessary to
hold a small graspable area stably

stems from the sensor’s transition to a higher strain as well as
the increased noise filtration. The two larger objects caused
a lower strain in the sensors as the fingers remained mostly
open from the large object. We do note, however, that the
strain sensors can not meaningfully tell the difference in
cross section between the two large objects (a difference of
18 mm), while there is a small difference in strain between
the smaller objects (a difference of 8 mm).

From the pressure sensor, we found that the larger objects
have a much higher response than the smaller objects. This
is probably due to the increased contact these objects have
with the pressure sensor, causing the dielectric to compress
over a larger area and the capacitance to increase. For a
similar reason, it seems that for a given object size, more
compliant objects tend to have a higher measured pressure as
they can conform more easily to the pressure sensor, leading
to an increase in affected area. We see this dramatically by
comparing the football’s reading to the 8-ball. However, as
the item gets smaller, the contact footprint with the gripper
shrinks as well. Since smaller objects tend to be grasped with
a pinch grasp rather than a power grasp, the resulting effect
on capacitance also tends to be diminished. Thus, we can

estimate compliance for large objects more effectively than
for smaller ones.

Using the results from the representative objects, we
linearly interpolated the strain sensor values for the repre-
sentative objects to allow our program to estimate size. We
then used this size estimate with the pressure sensor readings
to provide an estimate of compliance, performing a linear
interpolation with a factor for size. We then ran grasping
tests on the other 52 objects in our data set and recorded
estimated size and stiffness.

In our experiments, we were able to grasp 77% of the
56 objects tested (Fig. 4). We generally had difficulty with
small stiff objects which required pinch grasps (ex. plastic
strawberry, small rubber duck) and heavy objects (ex. wood,
drill). While small objects in general were difficult for our
gripper due to the smaller area of graspable regions, small
stiff objects were even more difficult as they needed a larger
force to hold stably. Similarly, the weight of the heavier
objects would be larger than the contact friction, causing the
object to slip out of grasp. We could improve our grasping
with both sets of objects by reducing slip – whether by
closing the gripper more completely, increasing the gripper’s
contact friction, increasing the grasping force, or sensing slip
directly.

Of the objects we could grasp, since the estimates were
built off of an interpolation of four object sensor readings, we
noted a wide range of estimated compliance that affected our
evaluation. For very soft objects, our estimated compliance
coefficient often was greater than 10, so we capped those
values at 10. We also found that objects with metal in them
reported an extremely large negative estimated compliance
rating, ranging from -18 to -91. Since our sensors are
based around capacitive sensing, coming into contact with
metal objects would overwhelm our sensors and provide a
nonsensical response. This effect was present even in objects
with a slight amount of metal that was covered by plastic (ex.
video game controller, coffee tin). While this effect could
be useful for future object sorting, especially since living
tissue also modifies the capacitance significantly, objects with
negative compliance ratings (7 in total) were not used in our
evaluation of the estimated compliance rating. These objects
were still used in radius evaluation since the strain sensors
did not come into contact with objects.

From the 43 objects we could grasp, we were able to
estimate the cross sectional radius to within 33% accuracy
(Fig. 5A). Our system had a slight bias, tending to underes-
timate the radius of objects with radius lower than 30 mm,
and overestimating the radius of objects with radius greater
than 40 mm. This effect may be an artifact from the linear
interpolation performed from the four representative objects
and may be mitigated with a more complex interpolation.

From the 36 non-metal objects we could grasp, we were
able to tell the difference between hard and soft objects
with 78% accuracy (p-value = 0.0003) (Fig. 5B), where soft
objects were defined as those with compliance rating below
5 (the midpoint of our rating system). A binary classification
was used to evaluate our classifier as the capped estimated
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Fig. 5. Comparison of the estimated grasped object properties with ground
truth based on strain and pressure sensor readings. The estimated radius
showed a tight linear correlation with the actual radius (A), while the
estimated compliance rating could do a binary classification of hard vs. soft
objects (B). In both graphs, the dark gray line is y = x, where estimated
equals actual measurement. In (B), the size of the marker corresponds to
the size of the grasped object while the dashed lines represent the “hard /
soft” boundary.

compliance meant that more soft items were classified as 10,
making the system not have as much granular resolution as
desired.

We also found a slight correlation in compliance accuracy
to the size of object. As expected, our system was able to
more accurately tell an object’s compliance when the object
was larger as the difference between a stiff and soft object
would be more pronounced. We can see this slight effect
in Fig. 5B, where the smaller sized markers tend to be
further away from the ground truth line, especially for more
compliant objects.

Although the estimated compliance ratings did not match
as closely to the actual ratings as the radial measurements
did, the binary classification was still sufficient to distin-
guish between similarly sized objects. For example, the pool

noodle (radius 29 mm, compliance 8) and the rolling pin
(radius 25 mm, compliance 3) optically appear very similar
and were close enough in radius to potentially have their size
differences be lost through noise. However, our estimated
compliance for these objects were 9.4 and 1.4, respectively,
a significant and sufficient difference to tell the objects apart.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated a new soft gripper with
proprioceptive sensing capabilities that is fully electrically
actuated. By designing the gripper with scalability in mind,
this gripper avoids the bulkiness of fluidic driven soft
actuators and the stiffness of rigid-material grippers with
compliant drive-trains. This gripper is able to grasp a wide
range of objects with a simple open-loop control scheme and
sort these objects based on object radius and compliance.
Out of 56 total objects, 77% could be grasped and have size
estimated to within 30% of actual size, while 78% of non-
metal objects could be classified as hard / soft with 78%
accuracy.

Future work on this system will focus on better un-
derstanding and improved design of the pressure sensors
to address more complex applications. Although the pres-
sure sensors show potential and sufficient sensitivity, more
characterization is needed to fully understand what affects
their measurements. For example, the pressure sensors are
sensitive enough to detect in-hand object shifting between
the two fingers, but we do not yet know how to characterize
the motion. Creating an addressable array of pressure sensors
would be a good first step to answering these questions.

We would also like to integrate the tactile information of
this gripper with existing vision-based manipulation systems.
Supplementing a visual inspection of grasped object with
direct tactile information could lead to more dexterous ma-
nipulation and less time spent training to recognize how to
grasp new objects.
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